
СИСТЕМА ОТОПЛЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

Сценарий управления для регулятора автоматического ВЭСТ-02

Руководство по эксплуатации

Содержание

Вв	едение	2
1	Работа прибора в составе системы	3
2	Регулирование температуры в контуре отопления	3
	2.1 Регулирование по температуре наружного воздуха	3
	2.2 Часовая компенсация	5
	2.3 Поддержание температуры обратной воды	6
	2.4 Авария	7
3	Регулирование температуры в контуре ГВС	8
4	Управление циркуляционными насосами	8
5	Формирование сигналов управления регулирующим клапаном	9
6	Индикация	9
Приложение А. Схема системы отопления и ГВС		10
Пр	риложение Б. Схема подключения прибора	11
Пр	риложение В. Программируемые параметры	13

Введение

Настоящее документация предназначена для ознакомления обслуживающего персонала с сценарием работы автоматического регулятора ВЭСТ-02 (в дальнейшем по тексту именуемого «прибор» или «ВЭСТ-02»).

Прибор программируется для работы с одним из типовых сценариев на этапе выпуска производителем. Самостоятельное составление сценариев возможно на графическом языке программирования FBD (с помощью функциональных блоковых диаграмм) в бесплатной программной среде «АКИАР» производства ООО «НПО ВЭСТ».

1 Работа прибора в составе системы

При работе в составе системы прибор контролирует температуру наружного воздуха (Тнаруж), температуру воды в подающем и обратном трубопроводах контура отопления ($T_{\text{пол}}$ и $T_{\text{обр}}$), температуру в подающем и циркуляционном трубопроводе ГВС ($T^{\Gamma BC}_{nod}$ и $T^{\Gamma BC}_{obp}$).

По результатам измерений прибор формирует сигналы управления двумя регулирующими клапанами, один из которых служит для поддержания заданной температуры в контуре отопления, а другой – в контуре ГВС.

2 Регулирование температуры в контуре отопления

2.1 Регулирование по температуре наружного воздуха

Регулирование температуры в контуре отопления осуществляется по уставке (заданному значению) Т³_{под.} Значение Т³под является величиной переменной и вычисляется прибором исходя из текущей температуры наружного воздуха по графику $T_{\text{под}}^3 = f(T_{\text{наруж}})$ (рисунок 2.1), что выражается формулой:

$$T_{\text{под}}^3 = (20 - T_{\text{наруж}}) \cdot K_{\text{компенс}} / 100 + T_{20},$$
 (1)

где $K_{\text{компенс}}$ – угол компенсации температурного графика прямой воды (выражается в процентах);

Т₂₀ – точка смещения температурного графика прямой воды.

График температуры прямой воды корректируется двумя настроечными параметрами:

Компенс. – угол компенсации температурного графика прямой воды; Темп.20С – точка смещения температурного графика прямой воды.

Температура теплоносителя в подающем трубопроводе системы отопления также не должна превышать заданного максимального значения T^{max}_{nog} . В случае выполнения условия $T_{nog} > T^{max}_{nog}$ прибор вырабатывает управляющий сигнал на закрытие регулирующего клапана до тех пор, пока температура не станет ниже T^{max}_{nog} .

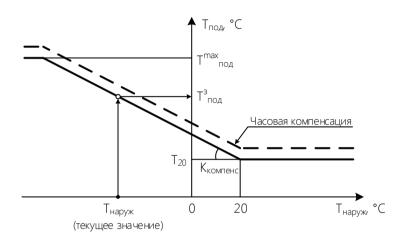


Рисунок 2.1 – Определение заданной температуры прямой воды системы отопления

Пример расчета

При измеренной температуре наружного воздуха $T_{\text{наруж}} = -20$ °C, настроенных значениях компенсации $K_{\text{компенс}} = 150$ и точки смещения температурного графика $T_{20} = 20$ °C, заданная температура в подающем трубопроводе отопления $T_{\text{под,}}^3$ в соответствии с (1), составит:

$$T_{\text{nod}}^3 = (20 - (-20)) \cdot 150 / 100 + 20 = 80 \, ^{\circ}\text{C}.$$

2.2 Часовая компенсация

В приборе предусмотрена возможность перевода системы отопления в специальный режим часовой компенсации, который позволяет сдвинуть вверх или вниз температурный график уставки температуры теплоносителя в подающем трубопроводе отопления (График подачи) для сокращения потребления тепловой энергии в периоды, когда это допустимо (например, в офисных помещениях в выходные дни или во время отсутствия персонала, а также в жилых домах в ночное время).

В этом режиме график задания уставки контура отопления сдвигается автоматически, на заданную величину в заданный период времени суток (по часам) в зависимости от дня недели.

Настройка параметров часовой компенсации осуществляется при программировании соответствующих параметров в разделе меню «Часовая компенсация».

Часовая компенсация включена, если значения Нач.комп и Кон.комп находятся в диапазоне от 0...23.

Часовая компенсация выключена, если значения Нач.комп и Кон.комп находятся в диапазоне от 24...255.

Рабочие дни	или	Выходные дни	— выбор типа дней недели для использования компенсации		
Нач.комп	– час начала действия компенсации, настраивается в диапазоне от 0 до 23 часов;				
Кон.комп	— час конца действия компенсации, настраивается в диапазоне от 0 до 23 часов;				
Знач.комп	— зна	ачение температурь	ы компенсации, настраивается в диапазоне от -20 до +20°C.		

2.3 Поддержание температуры обратной воды

При регулировании температуры в контуре отопления прибор одновременно с температурой воды в подающем трубопроводе контролирует и температуру обратной воды, возвращаемой в теплоцентраль, обеспечивая защиту системы от превышения ею заданного значения $T^3_{\text{обр.}}$

Поддержание T^{3} обр является приоритетным по отношению к регулированию T^{3} под.

Заданное значение температуры теплоносителя в обратном трубопроводе $T_{\text{обр}}^3$, является величиной переменной и вычисляется по графику $T_{\text{обр}}^3$ = f ($T_{\text{наруж}}$) (рисунок 2.2) что в аналитическом виде выражается, как:

$$T^{3}_{\text{ofp}} = \left(T_{\text{hapyx}} - T^{\text{min}}_{\text{hapyx}}\right) \cdot \left[\left(T^{\text{max}}_{\text{ofp}} - T^{\text{min}}_{\text{ofp}}\right) / \left(T^{\text{max}}_{\text{hapyx}} - T^{\text{min}}_{\text{hapyx}}\right)\right] + T^{\text{min}}_{\text{ofp}}. \tag{2}$$

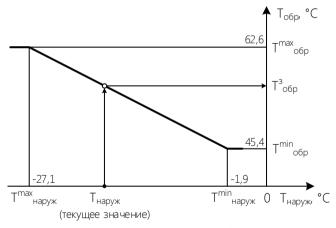


Рисунок 2.2 – Определение заданной температуры обратной воды системы отопления

 Данный температурный график задается двумя точками с координатами:

 Твн.min
 – минимум температуры наружного воздуха;

 Тобр.min
 – минимум температуры обратной воды;

 Твн.max
 – максимум температуры наружного воздуха;

 Тобр.max
 – максимум температуры обратной воды.

Если в процессе работы температура обратной воды по какой-либо причине превысит значение $T^{max}_{oбp}$, вычисленное по графику, то прибор переводит систему в режим защиты от данного превышения. При этом прибор прерывает регулирование температуры в контуре отопления по уставке T^{3}_{nog} и, для снижения завышенной $T_{oбp}$, начинает закрывать регулирующий клапан.

2.4 Авария

В приборе также предусмотрена аварийная уставка температуры обратной воды (Контур теплопотребления), равная 20 °С. Если выполняется условие $T_{\text{обр}}$ < 20 °С, прибор вырабатывает управляющие сигналы на открытие регулирующего клапана и включение лампы световой сигнализации «Авария». После возврата температуры $T_{\text{обр}}$ в допустимые пределы прибор переходит в режим знормального регулирования.

3 Регулирование температуры в контуре ГВС

Регулирование температуры в контуре ГВС осуществляется прибором с помощью регулирующего клапана по уставке Т³_{гвс}, задаваемой пользователем при программировании прибора:

Зад.Тгвс

– требуемая температура теплоносителя в системе ГВС.

В случае необходимости дополнительного контроля за температурой возвращаемого в теплосеть теплоносителя, проходящего через теплообменник ГВС, устанавливается датчик температуры обратной воды ГВС (см. Приложение Б). В этом случае приоритетным по отношению к поддержанию температуры $T^3_{rвc}$ будет регулирование температуры возвращаемого в теплосеть теплоносителя по графику п. 2.3.

Однако, как правило, данный датчик температуры на обратном трубопроводе внешнего контура системы ГВС с теплообменником не устанавливается (установка перемычки в этом случае описана в Приложении Б).

4 Управление циркуляционными насосами

В приборе программно предусмотрено переключение циркуляционных насосов с основного на резервный один раз в сутки в 12:00 (полдень).

Схема включения насосов при этом должна предусматривать подачу питающего напряжения через контакты реле (см. Приложение Б).

5 Формирование сигналов управления регулирующим клапаном

Управление клапанами (контура отопления и контура ГВС) производится одинаковым широтно-импульсным способом по независимым пропорционально-интегрально-дифференциальным (ПИД) законам регулирования.

Динамические параметры настройки ПИД-регулятора:

Вр.демпф
Время об
Вр.возд

- постоянная времени демпфирования, определяющая время интегрирования измеряемых параметров;
- постоянная времени объекта управления, характеризующая инертность объекта управления; рекомендуемое значение примерно равно третьей части времени установления температуры в трубопроводе;
- время воздействия (коэффициент усиления), определяющее длительность управляющего импульса для регулирующего клапана.

Производителем устанавливаются параметры настройки ПИД-регулятора, обеспечивающие нормальный процесс регулирования для большинства систем отопления и ГВС. Уточнение и корректировка значений параметров производятся при наладке регулирующего комплекса и в процессе эксплуатации.

6 Индикация

Светодиодные индикаторы симисторных выходов на лицевой панели прибора (см. руководство по эксплуатации автоматического регулятора ВЭСТ-02) в случае данного «сценария» сигнализируют о следующем:

- 1 сигнал «закрытие» регулирующего клапана системы отопления;
- 2 сигнал «открытие» регулирующего клапана системы отопления;
- 3 сигнал «закрытие» регулирующего клапана системы ГВС;
- 4 сигнал «открытие» регулирующего клапана системы ГВС;
- 5 работа основного циркуляционного насоса;
- 6 работа резервного циркуляционного насоса.

Приложение А. Схема системы отопления и ГВС

(справочное)

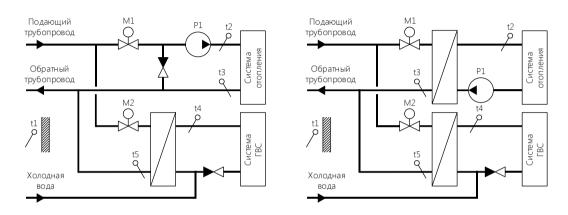


Рисунок А.1 – Типовые схемы присоединения системы отопления и ГВС

Обозначения:

- t1 датчик температуры наружного воздуха;
- t2 датчик температуры прямой воды системы отопления;
- t3 датчик температуры обратной воды системы отопления;
- t4 датчик температуры прямой воды системы ГВС;
- t5 датчик температуры обратной воды системы ГВС;
- M1 электропривод регулирующего клапана системы отопления (клемма 7 «закрытие», клемма 9 «открытие»);
- M2 электропривод регулирующего клапана системы ГВС (клемма 10 «закрытие», клемма 12 «открытие»);
- **Р1** циркуляционный насос.

Приложение Б. Схема подключения прибора

(справочное)



Рисунок Б.1 – Схема подключения верхней клеммной колодки

Обозначения:

- t1 датчик температуры наружного воздуха;
- t2 датчик температуры прямой воды системы отопления;
- t3 датчик температуры обратной воды системы отопления;
- **t4** датчик температуры прямой воды системы ГВС;
- t5 датчик температуры обратной воды системы ГВС.

Примечание: в случае отсутствия датчика температуры обратной воды системы ГВС (t5), необходимо установить перемычку между клеммами 28 и 23.

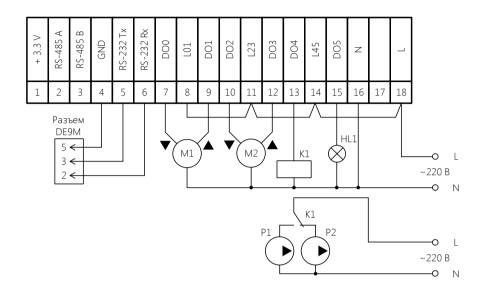


Рисунок Б.2 – Схема подключения нижней клеммной колодки

Обозначения:

- M1 электропривод регулирующего клапана системы отопления (клемма 7 «закрытие», клемма 9 «открытие»);
- M2 электропривод регулирующего клапана системы ГВС (клемма 10 «закрытие», клемма 12 «открытие»);
- **К1** реле для переключения циркуляционных насосов;
- **HL1** лампа световой сигнализации «Авария»;
- Р1 основной циркуляционный насос;
- Р2 резервный циркуляционный насос.

Приложение В. Программируемые параметры

Таблица В.1 – Программируемые параметры сценария

Обозначение	Комментарий	Единицы измерения	Диапазон значений	Значение по умолчанию
	Контур теплопотреб.	пения		
График Тподачи	Параметры настройки графика Тподачи			
Тем.внеш	Температура внешнего воздуха	°C	-	Измеренное
Компенс.	Угол компенсации	%	20399,9	149.6
Темп.20С	Точка смещения температуры подачи	°C	559,9	20.0
Тпод.тах	Максимальная температура подачи	°C	60119,9	79,9
Зад.Тпод	Температура подачи	°C	-	Расчетное
Тем.под	Температура подачи	°C	-	Измеренное
Тем.обр	Температура обратной воды	°C	-	Измеренное
Дин.пар. регул.с имп.вых.	Параметры настройки регулятора			
Вр.дмпф	Время демпфирования	МС	0,526	20,1
Врем. об.	Постоянная времени объекта управления	МС	11,82999.3	400,2
Вр.возд	Коэффициент усиления	МС	1299,5	34.2
Ошибка	Разность температур	°C	-	Ручное управление
	Контур ГВС			
Тзад.гвс	Температура ГВС заданная	°C	4090	59.9
Тем.гвс	Температура ГВС	°C	-	Измеренное
Тгвс.обр	Температура обратной воды ГВС	°C	-	Измеренное

Дин.пар. регул.с имп.вых.	Параметры настройки регулятора					
Вр.дмпф	Время демпфирования	MC	130	10		
Врем. об.	Постоянная времени объекта управления	МС	102999.8	99,9		
Вр.возд	Коэффициент усиления	MC	0.6199.1	10		
Ошибка	Разность температур	°C	-	Ручное управление		
	График Тобр. заданн	юй				
Твн.min	Точка минимума внешней температуры	°C	-4019,9	-0,1		
Тоб.min	Точка минимума обратной температуры	°C	2079,9	42,1		
Твн.тах	Точка максимума внешней температуры	°C	-600.1	-27.1		
Тоб.тах	Точка максимума обратной температуры	°C	2099.9	62.1		
Зад.Тобр	Температура обратной воды	°C	-	Расчетное		
Часовая компенсация (рабочие/выходные дни)						
Нач.комп	Начало компенсации	час	023	19.0		
Кон.комп	Конец компенсации	час	023	7		
Знач.ком	Значение компенсации	°C	-2019.9	0.0		
	Входные измеренные	знач.				
Тем.внеш	Температура внешнего воздуха	°C	-	Измеренное		
Тем.под	Температура подачи	°C	-	Измеренное		
Тем.обр	Температура обратной воды	°C	-	Измеренное		
Тем.гвс	Температура горячей воды ГВС	°C	-	Измеренное		
Тгвс.обр	Температура обратной воды ГВС	°C	-	Измеренное		

ООО «НПО ВЭСТ»

634009, г. Томск, ул. Мельничная, д. 45а

Тел.: (3822) 400-733

Факс: (3822) 400-887

E-mail: info@npowest.tom.ru www.npowest.ru